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Exercise 1

Classify each of the partial differential equations below as either hyperbolic, parabolic, or elliptic,
determine the characteristics, and transform the equations to canonical form:

(a) dugy + DUgy + Uyy + Uz + Uy = 2
2Ugpy — SUgy + Uyy = Y

YUgg + (T + Y)Ugy + TUyy =0
Ugg + YUyy = 0

Ylge — 2Uzy + € Uyy + 2uy —u=20

)

)

)

)

) Uz + TUyy =0
) 22Uy + Aylpy + Uyy + 2uz =0
) 3YUzy — TUyy =0

) Usg + 22Ugy + APuyy +u=>5

)

2 2 _
YUz + T7Uyy = 0

Solution
Part (a)
Comparing this equation with the general form of a second-order PDE,

Atgy + Bugy + Cuyy + Dug + Fuy + Fu =G, wesee that A=4, B=5,C=1,D=1,E=1,
F =0, and G = 2. The characteristic equations of this PDE are given by

dy 1 3
%_2A(Bi B —4AC)
@:1(51\/25—16)

dr 8

dy 1

—~ =—-(5b+£3

dzx 8( )

d—y—l or @—1

de de 4

Note that the discriminant, B? — 4AC = 25 — 16 = 9, is greater than 0, which means that the
PDE is hyperbolic. Therefore, the solutions to the ordinary differential equations are two real
and distinct families of characteristic curves in the xy-plane.

1
y=x+Ci; or yzz-%"f‘CQ-

Solve for the constants of integration.

Ci=y—=x
1
0223/—190
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Make the change of variables, { =y —z and n =y — 4x so that the PDE takes the simplest form.
Use the chain rule to write the derivatives in terms of these new variables.

@_@gjL@u@n 8u( 1)+87u 1 . lu
dr  0tdxr  Ondr Of on\ 4) ¢ g

4
Ou _O0udf  Oudn 0Ou du
87y_8§8y+8778y 85(1)+ (1) = ug + uy

Pu 9 (ou) _(0¢0 L OO (Ou _7_12 Jow 1owN oL oL
or2  Ox \ Ox Ox O 83:877 or) 40n o don) T T igm
Pu 0 (Ou\ _ (060 Lo O (Ou) _ (0 ON(Ou Ou\_ o .
9y2 Oy \ 9y dy ag oy on ) \ dy o€ a ¢ "on) ¢ SRR

Pu _ 9 (ou) _ (9D Lo @+au R S
dzdy Oz \ Oy oz 0t oz o o€ T T e

Substitute these formulas into the PDE.

[\

)

1 1 5 1
4 (u& + gy + 16u7m> +5 (-uss — qlen — 4unn> + (uge + 2ugy + )

1
+ <—u§ - 4u,7> + (ue +uy) =2

Simplify the left side.

9 3
—iu&, + zun =2

Solve for ugy.
1 8
Ugn = 3Un =9

This is the first canonical form of the hyperbolic PDE. Make the additional change of variables,
a=<¢+nand g =& —n. Use the chain rule again to write the derivatives in terms of these new
variables.

@_@aa ou 0p 8u(1)+%(1)_u G
96 9a0f 980 da o T e B

ou 8u8a+@%_@(1)+@_
817 dadn 0B On Oa ap

o%u 0 (Ju . Jda 0 op B b 9 -
ocon — 9¢ ( > a <0£8a 8§0B> < ) - <304+8B> (Ua — UB) = Uaa — UBB

Substitute these formulas into the first canonical form.

1 8
Uae — UBP = g(ua —ug) — 0

This is the second canonical form of the hyperbolic PDE.
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Part (b)
Uy — SUgy + Uyy = Y
Comparing this equation with the general form of a second-order PDE,

Aty + Bugy + Cuyy + Dug + Euy + Fu =G, we see that A=2, B=-3,C=1,D=0, £ =0,
F =0, and G = y. The characteristic equations of this PDE are given by

dﬁ:i(BiM)

dzx

dy 1

2 (34 _

I 4( 3+v9-38)
dy 1

—=—-(-3+1

dzx 4( )
@——1 or @——1
de de 2

Note that the discriminant, B? — 4AC = 9 — 8 = 1, is greater than 0, which means that the PDE
is hyperbolic. Therefore, the solutions to the ordinary differential equations are two real and
distinct families of characteristic curves in the xy-plane.

1
y=—-x+C; or y:—§m+02

Solve for the constants of integration.

Ci=y+zx
1
C2=y+§x

Make the change of variables, { = y+x and n =y + %x, so that the PDE takes the simplest form.
Use the chain rule to write the derivatives in terms of these new variables.

Ou_9uoe  oudy _Ou ou(1y L
or 00z  Ondx  Of on\2) T am
Ou Oud§  Oudn Ou ] ou

oy ~ogay " anay ~ogV T gy et

0x2  Ox \ox) \0xd¢ 0Oxon z)  \o¢ ' 20n €T 5tn | = Yeg T Uen T 7t
@—E Quy _ %24-@2 uy _ 2—1-2 (ug + up) = uge + 2ugy +u
o2 oy \oy) \oyac "oayon)\oay)  \oc Ton) e W T e &n T Uy

dz0y Oz \dy) \ox o€ "oxon) \oy) \oc "20n) T W T T gRen T o

Additionally, solving the change of variables for x and y yields x = 2(§ —n) and y = 2n — &.
Substitute these formulas into the PDE.

1 3 1
2 <u§5 + ugy + 4”7777) -3 <u55 + §u§,7 + 2u7777> + (u5§ + 2“577 + uym) =2n—-£
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Simplify the left side.
1
—5len = 2n —¢&.
Solving for u¢, gives
ugy = 2(§ — 2n).

This is the first canonical form of the hyperbolic PDE. Make the additional change of variables,
a=¢+nand g =& —n. Use the chain rule again to write the derivatives in terms of these new
variables.

Ou _Ouda  Oudf _Ou ., Ou
0 " 0a0f T OBOE 0’ 0B
Ou  Ouda auaﬂ_% @_ o
on " daon T ooy~ aa D)t gt T e us

Ou _ 0 (Ou) (000  OBON(ou_ (0 0N - o _

ocon  oc\on) \ocoa  acop)\on) \oa "op) e TH T Tea T8
Additionally, solving the change of variables for £ and 7 yields £ = «/2+ /2 and n = a/2 — 3/2.
Substitute these formulas into the first canonical form.

von s =2[(5+2) -2 (3-2))

Uga — U = 3 —

(1) = uq + ug

This is the second canonical form of the hyperbolic PDE.
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Part (c)
YUy + (‘7: + y)umy + .CE’U,yy =0
Comparing this equation with the general form of a second-order PDE,

Atgy + Bugy + Cuyy + Dug + Euy + Fu =G, wesee that A=y, B=x+y,C=2x2,D =0,
E =0, F =0, and G = 0. The characteristic equations of this PDE are given by

dy 1 2 _
%_2A<Bi B 4AC>

dy _ 1 7
i~ 2y (m+yi\/(at+y) 43:3/)
dy _ 1 sy
%—2y($+yi (z y))

dy 1

2 (x+y=Llz—yl).

Note that the discriminant, B2 — 4AC = (z — y)?, is greater than 0 for all  and y, which means
that the PDE is hyperbolic. Therefore, the solutions to the ordinary differential equations are
two real and distinct families of characteristic curves in the xy-plane.

dy 1 x dy 1
> = — = — : = = —(2 = —, = = —(2 =1
e>y=le—yl=r-y: - 2y(ﬂﬁ) J dr 2y(y)
dy 1 dy 1 x
r<y=lr—yl=y—az: %:g(%):la %:@(256):;

The two characteristic equations are the same regardless of whether z is greater than y or not:

dy = dy
—=- o — =1
de vy dx
Integrate these equations.
vz
—=—+4+C; or =z + C
9 5 + O Y + C2
Solve for the constants of integration (or any convenient multiple thereof).
20, = y? — 2?
Co=y—=x

Make the change of variables, £ = y? — 22 and 1 = y — , so that the PDE takes the simplest
form. Solving these equations for x and y yields
_ - £+’

and y =
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Use the chain rule to write the derivatives in terms of ¢ and 7.

du _ 0udE  dudn _ du O 1) o = "
9r ~ 0cor " onox ~ ogl 2T g, (Tl = 2wue —up = T e —uy
du _QudE  dudn _du au £+ n?

o _ o (ou) asmana o\ _(F-€0 0\ (P-c
0x2 Oz \ Ox ox ¢ Oxon) \ox) n 0 On n ¢
2 ¢\2 92
= (77725)“55 - 5(772 = §ugn — 2ug + upy
Pu 9 (Ou\ (060  Onod 20 £+
0y2_8y<8y>_<0y3£+8y3n>< > 5+3n ( u§+u">
+22 2
- ¢ T vt n(WQ + §)ugy + 2ug + uny
0%u 0 (Ou 99 I I\ [Ou -0 0 £+n?
= (o) = + ot ) (25) = -~ g + 1ty
0xdy  Ox \ Jy Ox 0§  Ox On y n 0& 0On n
n'—¢ 26
= u —u u
2 133 n &n uul

Substitute these formulas into the PDE.

YUze + (T + Y)Ugy + Tuyy =0

2 2 £\2 2)
<£+77 ) |:(77 26) USE_(TI2_£)U€17_2U§+U7777:|

2n n n

(f n+§+n2>[ —SQU&_%%_U
2n 2 n? n oM

¢ — n)[(£+n2)2 2 5
Uge + — (07 + &) uey + 2ug + Upy | =0
< 2n 772 133 77( )ﬁn 3 nmn

Simplify the left side.
—2772u£,7 —2nug =0
Solve for ug,.
1
Uey = ——U,
&n n 3

This is the first canonical form of the hyperbolic PDE. Make the additional change of variables,
a=¢+nand g =& —n. Use the chain rule again to write the derivatives in terms of these new

variables.
ou Ouda Oudf Jdu ou
ROE Ty ) =
€ 900t Topoe oo )t gt T et us

Ou  Ouda OudBf  Ou @

- T _271
an " oaoy ooy dal T

82u_8 ou\ (Oa 0 0B 0 ou\ (0 0 B
sedy = 3 o) = (G e * oea) () = (5 * 7)o =) = o0 =0
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Additionally, solving the change of variables for £ and 7 yields £ = «/2 + /2 and n = «/2 — 3/2.

Substitute these formulas into the first canonical form.

(Ua + up)

Uaa —Ugs = —
2

@

Uga — UBB = 3 (ua + ’Lbﬁ)

This is the second canonical form of the hyperbolic PDE.
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Part (d)
Ugz + YUyy = 0

Comparing this equation with the general form of a second-order PDE,
Aty + Bugy + Cuyy + Dug + Euy + Fu =G, we see that A=1, B=0,C=y, D=0, E=0,
F =0, and G = 0. The characteristic equations of this PDE are given by

dy _ i (Bi VB2 —4AC)

dx
dy 1
&= (V)
Wty

dx

Note that the discriminant, B> — 4AC = —4y, can be positive, zero, or negative, depending on
whether y < 0, y = 0, or y > 0, respectively. That is,

hyperbolic if y < 0.
The PDE is { parabolic if y = 0.
elliptic if y > 0.

Let us consider each case individually.

Case I: The PDE is hyperbolic (y < 0)

The ordinary differential equations yield one real family of characteristic curves in the zy-plane.
Separating variables and integrating both sides of the characteristic equations, we find that

2\/—y = 4z + Co.

Solving for y, the characteristic curves are y(z) = —1(z £ Cp)?. Solving for the constant of
integration (or any convenient multiple thereof),

Working with —x: 4+ Cy =2 4+ 2/—y = ¢(z,y)
Working with +2: — Cy =z — 2/—y = ¥(z,y).
Now we make the change of variables, £ = ¢(z,y) = = + 2\/—y and n = ¢¥(x,y) = x — 24/, so

that the PDE takes the simplest form. Solving these two equations for x and 2,/—y gives
x=(£+n)/2 and 2,/—y = (£ — n)/2. With these new variables the PDE becomes

Atuge + B ugy + Cugy + D ue + E*uy + Fru = G¥,

where, using the chain rule, (see page 11 of the textbook for details)

A" = A& + B&&y + CE)

B* = 2A&m, + B(&any + §yna) +2CEym,

C* = An2 + By + an

D* = Ayy + BEyy + C&yy + DE, + EE,

E* = Angy + By + C1yy + D + En,

F*=F

G*=G.
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Plugglng in the numbers and derlvatlves to these formulas, we find that A* =0, B* =4, C* =0,

D* = Q, E* = —2\/1_7 = 5 , F* =0, and G* = 0. Thus, the PDE simplifies to

2

r

2 2
u_
E—n° &1

4u§7, + Uy = 0.

Solving for ug, gives
1
Ugn = _2(5 —_ 77) (ug - uﬁ)'

This is the first canonical form of the hyperbolic PDE. If we make the additional change of
variables, a = { +n and 3 = { — 7, then the chain rule gives ug, = uaa — ugg, e = uq + ug, and
Uy = Uq — ug. The PDE then becomes

1
Uaa — UBE = —Bu5.

This is the second canonical form of the hyperbolic PDE.

Case II: The PDE is parabolic (y = 0)

Substituting y = 0 into the PDE reduces it immediately to the canonical form of a parabolic
equation, ug, = 0. The characteristic equation is given by
d
—o.
dx

Solving this equation for y gives y(z) = D, where D is an arbitrary constant. The characteristic
curves in the zy-plane are lines parallel to the z-axis.

Case III: The PDE is elliptic (y > 0)

Since the discriminant is negative for y > 0, the characteristic equations have no real solutions.
This means that the family of characteristic curves lies in the complex plane:

dy

di_:l:Z\/i

Separating variables, integrating, using the fact that 1/i = —i, and multiplying both sides by —1
gives

2iv/y = Fx + Cy.

Solving for the constant of integration (or any convenient multiple thereof),

Working with —x:  + Cy = x + 2ivy = ¢(z,y)
Working with +x:  — Cy = x — 2ivy = ¥ (z,y).

Because these functions are complex, however, the PDE will not be in the simplest form. Since &
and 7 are complex conjugates of each other, we introduce the new real variables,

a= (et =z

B= o (6—n) =2V,
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which transform the PDE to the canonical form. After changing variables (z,vy) — («, 3), the
PDE becomes

where, using the chain rule,

A* = Aa? + Bagay, + C’ai

B™ = 2Aa,f: + Blawfy + ayBs) +2Cay By
C*™* = AB: + BB.B, + CB;

D™ = Aoy + Bogy + Cayy + Day + Eay,
E* = AByy + BBy + CByy + DB, + EB,
F* =F

G* = G.

Plugging in the numbers and derivatives to these formulas, we find that A*™ =1, B** = 0,
C* =1,D* =0, B* = —ﬁ = —%, F** =0, and G** = 0. The PDE becomes

1
Uqa + UBE — Buﬁ =0.

Solving for uaq + ugg gives
1
Uga + UBE = Buﬁ.

This is the canonical form of the elliptic PDE.
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Part (e)
Ylze — 2Uzy + € Uyy + 22U, —u =0
Comparing this equation with the general form of a second-order PDE,

Augy + Bugy + Cuyy + Dug + Fuy + Fu =G, we see that A=y, B=-2,C=¢", D = x2,
E =0, F=-1, and G = 0. The characteristic equations of this PDE are given by

%25(31 B2—4AC)
dy 1

— —(—2+./4-1 w)
dx 2y< ye

d—y:1<—1i 1—yew).
de y

Note that the discriminant, B> — 4AC = 4 — 4ye®, can be positive, zero, or negative, depending

on whether y < e ™™, y =e %, or y > e~ %, respectively. That is,

hyperbolic ify < e™™.
The PDE is ¢ parabolic if y =e™*.
elliptic ify >e™".

Let us consider each case individually.

Case I: The PDE is hyperbolic (y < e™%)

The solutions to the ordinary differential equations are two real and distinct families of
characteristic curves in the zy-plane. Unfortunately, the equations are difficult (if not impossible)
to solve analytically, so the canonical form of the PDE cannot be determined. The characteristic
curves can be visualized, however, by plotting the slope fields for each ODE; they are tangent to
the slope fields at each point on the graph. See the figures on the following page. y(z) = e ™ is
plotted in red on each graph to show the boundary of the domain of hyperbolicity.
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Case II: The PDE is parabolic (y = e™7)

When y = e™*, the characteristic equations reduce to

dy _ _1_
de vy

and this equation can be solved. Separating variables and integrating gives

y = —e’ + Cp.

Solving for the constant of integration,

Co=y+e" =o(x,y).

Now we make the change of variables, £ = ¢(z,y) = y + €®. 1 can be chosen arbitrarily so long as
the Jacobian of £ and 7 is nonzero. We choose n = y for simplicity. With these new variables the

PDE becomes
Auge + B*ugy + Cuyy + D ug + E*uy + F*u = G*,

where, using the chain rule, (see page 11 of the textbook for details)

A* = A& + B&E, + O

B* =2A&n, + B(ga:ny + fynx) +2C¢&,n,
C* = An? + Bnany + Cn?

D* = Ayy + By + C&yy + D& + EEy
E* = Angy + Bngy + Cnyy + Dy + Eny
F*=F

G*=G.

Plugging in the numbers and derivatives to these formulas, we find that A* =0, B* = 0,

Cr=e*=¢—n, D*=e*(22+e %) =22+ 1=[In(¢ —n)]*(E—-n)+1, EB*=0, F*

G* = 0. Thus, the PDE simplifies to
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(& = m)ugy + {(€ =€ —m]* + 1} ug —u =0.

Solving for w,,, gives
1

u.

Unn = — {[hl(f — ) + éin}% +

This is the canonical form of the parabolic PDE.

Case III: The PDE is elliptic (y > e™™)

When y > e™*, the characteristic equations satisfy

dy 1

dx_§<—1iz’\/yex7—1),

and the two distinct families of characteristic curves lie in the complex plane. If we could solve
the equations, we could determine the canonical form of the PDE.
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Part (f)
Uz + TUyy = 0
Comparing this equation with the general form of a second-order PDE,

Aty + Bugy + Cuyy + Dug + Euy + Fu =G, we see that A=1,B=0,C=2,D =0, E=0,
F =0, and G = 0. The characteristic equations of this PDE are given by

%zi(Bi B2—4AC)
dy 1

—= == (+V—4x)

dr 2
d
& +V—-x.
dzx
Note that the discriminant, B? — 4AC = —4x, can be positive, zero, or negative, depending on

whether x < 0, x = 0, or > 0, respectively. That is,

hyperbolic if z < 0.
The PDE is { parabolic  if x = 0.
elliptic if x > 0.

Let us consider each case individually.

Case I: The PDE is hyperbolic (z < 0)

The solutions to these ordinary differential equations are two families of real and distinct
characteristic curves in the zy-plane. Integrating the equations, we find that

y(z) = = (—2)%2 + Cp.

3

Solving for the constant of integration (or any convenient multiple thereof)!,

Working with —g(—x)3/2: Co=y+ g(—a:)?'/2 = ¢(z,y)

Working with —1—%(—30)3/2: Co=y— %(—w)?’/2 = Y(z,y).

3/2 3/2

and 1) = ¥(z,y) =y — 3(-2)*?,
so that the PDE takes the simplest form. Solving these two equations for (—z)%/? and y gives
(—2)32 = 3(¢ —n) and y = 1(€ + ). With these new variables the PDE becomes

Now we make the change of variables, £ = ¢(z,y) =y + %(—x)

A*’U,gg + B*U@ + C’*u,m + D*u§ + E*un + F*u = G*,

!The book chooses to use %C() in the back, but this does not change the canonical form of the PDE.
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where, using the chain rule, (see page 11 of the textbook for details)

A" = A€ 4 Beg, + CE2

B* = 2A&m, + B(&ny + &yna) + 20y,
C* = An? + Buany + O

D* = Ayz + B&oy + C&yy + D& + EEy
E* = Ange + Bnay + Ciyy + Dng + Eny

F*=F

G*=G.
Plugging in the numbers and derivatives to these formulas, we find that A* = 0, B* = 4z, C* =0,
D* = wljx, E* = —zjjx, F* =0, and G* = 0. Thus, the PDE simplifies to

1

1
_ -0
+ 2\/—3;”5 2\/—:16“77

4a:u5,7

1 1 1
Yen = T (2~/—acug a 2\/—xun>
B 1
Uen = 8(—$)3/2 (uf - u’?)

1
T 6 —m)
This is the first canonical form of the hyperbolic PDE. If we make the additional change of
variables, a = { +n and 3 = { — 7, then the chain rule gives u¢, = o — ugg, e = uq + ug, and
Uy = uq — ug. The PDE then becomes

(ug — up).

%MMWM4%—WH

Uaa — Upp =

1
Uga — UGR = %uﬁ.

This is the second canonical form of the hyperbolic PDE.

Case II: The PDE is parabolic (z = 0)

Substituting x = 0 into the PDE reduces it immediately to the canonical form of a parabolic
equation, ug, = 0. The characteristic equation is given by

dy

de
Solving this equation for y gives y(z) = D, where D is an arbitrary constant. The characteristic
curves in the zy-plane are lines parallel to the z-axis.

0.

Case III: The PDE is elliptic (z > 0)

The characteristic equations have no real solutions for x > 0. This means that the two distinct
families of characteristic curves lie in the complex plane. Integrating the characteristic equations,
we find that
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dy

0
y(x) = :l:g;zcg/2 + Cp.

Solving for the constant of integration (or any convenient multiple thereof),
e 203 2i 379
Working with —gen +Co=y+ 3= o(z,y)
21 21
Working with +§Zx3/2: +Co=y— §Z$3/2 = (z,y).

The typical variables, £ = ¢(z,y) =y + %x?’ﬁ and n = (z,y) =y — %333/2, are complex
numbers, so the PDE will not transform to the simplest form. Rather, since £ and n are complex
conjugates of each other, we introduce the new real variables,

a=%(£+n)=y

L2 3

which do transform the PDE to the simplest form. After changing variables (z,y) — (a, ), the
PDE becomes
A**uaa + B**uaﬁ + C**U,BB + D**Ua +E**’U,ﬁ + F**qy = G**7

where, using the chain rule,

A* = Aa? + Bagay, + C’ai

B* = 2Aa, s + B(owfBy + oy fz) + 2C oy By
C** = ABI + BB.By + CB,

D™ = Aoy + Bogy + Cayy + Day + Eay,
E™ = APy + BBy + CByy + DBy + EBy
> =F

G =G.

Plugging in the numbers and derivatives to these equations, we find that A*™ = x, B** =0,

C* =g, D =0, E* = #, F** =0, and G* = 0. The PDE becomes
x

1
TUaa + TUgg + mﬂ/@ =0

1
Uga + ugp = —W’LLﬁ
1
Uga T+ UBE = —@urg.

This is the canonical form of the elliptic PDE.
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Part (g)
T2 Uy + AYUgy + Uyy + 2uy = 0
Comparing this equation with the general form of a second-order PDE,

Aty + Bugy + Cuyy + Dug + Euy + Fu = G, we see that A=2%2 B=4y,C=1,D=2,E =0,
F =0, and G = 0. The characteristic equations of this PDE are given by

dy 1

YW__ (p+r/B2—44 )
dx 2A< ¢
dy 1

YW 2 (ay+ /1642 —4 2)
dzx 2x2<y Y t
dy 1
—:—(2y:t\/4y2—x2>.
de 22

Note that the discriminant, B? — 4AC = 16y? — 422, can be positive, zero, or negative, depending
on whether 1632 — 422 > 0, 16y% — 422 = 0, or 16y> — 42% < 0, respectively. That is,?

hyperbolic if 2|y| > |z|.
The PDE is ¢ parabolic  if 2|y| = |z|.
elliptic if 2|y| < |x|.

Let us consider each case individually.

Case I: The PDE is hyperbolic 2|y| > |z|

The solutions to the ordinary differential equations are two real and distinct families of
characteristic curves in the zy-plane. Unfortunately, the equations are difficult (if not impossible)
to solve analytically, so the canonical form of the PDE cannot be determined. The characteristic
curves can be visualized, however, by plotting the slope fields for each ODE; they are tangent to
the slope fields at each point on the graph. See the figures on the following page. 2|y| = |z| is
plotted in red on each graph to show the boundary of the domain of hyperbolicity.

2Bring 422 to the right, take the square root of both sides, and divide both sides by 2 in all cases.
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Figure 4: Slope field for d
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Case II: The PDE is parabolic (2|y| = |z]|)

Squaring both sides gives 4y = 22, and the characteristic equations,

dy 1
U = oy Va2 — 2)
2= (wEVIP =),
reduce to
dy 2y 1
de 22 2y’

and this equation can be solved. Separating variables and integrating gives
2 _
Yy =x+ C().
Solving for the constant of integration,

Co=y>—z=¢(z,y).

Now we make the change of variables, £ = ¢(z,y) = y?> — x. 1 can be chosen arbitrarily so long as
the Jacobian of ¢ and 7 is nonzero. We choose 1 = y for simplicity. With these new variables the

PDE becomes

Auge + B*ugy + Cuyy + D ug + E*uy + F*u = G*,

where, using the chain rule, (see page 11 of the textbook for details)

A* = AE + B&&y + CE)

B* = 2A&m, + B(&ny + §yna) + 2CEyn,
C* = An2 + By + CT]S

D* = Ay + B&yy + C&yy + D, + EE,
E* = Angy + Bngy + Cnyy + Dy + Eny
F*=F

G =G.

Plugging in the numbers and derivatives to these formulas, we find that A* =0, B* =0, C* =1,

D*=0, E*=0, F* =0, and G* = 0. Thus, the PDE simplifies to

Upy = 0.

This is the canonical form of the parabolic PDE.

Case III: The PDE is elliptic (2]y| < |z|)

When 442 — 22 < 0, the characteristic equations satisfy

1
dy <2y:|:i\/x2 —4y2) ,

der 22

and the two distinct families of characteristic curves lie in the complex plane. If we could solve

the equations, we could determine the canonical form of the elliptic PDE.

www.stemjock.com



Debnath Nonlinear PDEs 3e: Chapter 1 - Exercise 1 Page 20 of 29

Part (h)
3YUzz — TUyy = 0
Comparing this equation with the general form of a second-order PDE,

Atz + Bugy + Cuyy + Dugy + Euy + Fu = G, we see that A=3y, B=0,C=—-2,D=0, £ =0,
F =0, and G = 0. The characteristic equations of this PDE are given by

%:i(}gi B2—4AC)
Zi—éy( 12xy>

dy x
= =4,/ —.
»=*5

Note that the discriminant, B? — 4AC = 12zy, can be positive, zero, or negative, depending on
whether xy > 0, xy = 0, or zy < 0, respectively. That is,

hyperbolic if xy > 0.
The PDE is { parabolic  if zy = 0.
elliptic if zy < 0.

Let us consider each case individually.

Case I: The PDE is hyperbolic (zy > 0)3

The solutions to these ordinary differential equations are two real and distinct families of
characteristic curves in the xy-plane. Separating variables and integrating the equations, we find

that 5
23?2 =+
3?J

The characteristic curves are given by

(z) = §C’ ii 3/2 23
y(x) = 50 \/gl‘ .

Solving for the constant of integration (or any convenient multiple thereof),

— - -z + ().
V3 3 ’

L2 2 )

V3

1 2
Working with —% . §m3/2: 20y =y +

1 2 1
Working with +—— - =2%/2; Co=1y*? — —a3/? = z,y).
Now we make the change of variables, £ = ¢(z,y) = Y32+ %x?’ﬂ and

n=1y(z,y) = Y32 — %az?’/?, so that the PDE takes the simplest form. Solving these two

2/3
equations for x and y gives x = [@(5 - 77)} and y = [%(f + 77)]2/3. With these new variables

the PDE becomes
A*uge + B ugy + Cupy + D*ug + Euy + Fru = G*,

32y > 0 holds in the first and third quadrants.
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where, using the chain rule, (see page 11 of the textbook for details)

A* = A& + B&&, + CE,

B* = 2A&m, + B(&eny + §yna) + 2CEyn,
C* = An? + Bnany + On?

D* = Ay, + Béyy + C&yy + DE, + EE,
E* = Angy + Bngy + Cnyy + Dy + Eny,
F*=F

G =G.

Plugging in the numbers and derivatives to these formulas, we find that A* =0, C* =0, F* =0,
G* =0,

9 /3\"3
B =-om =5 (3) € ner
L 33y 3w 3(3)
4V Ay 26— BE Y
g 33y 3w 3(3)¢

4 Vo A4Sy o 26— BE+n/3
Thus, the PDE simplifies to
3)70 s®Me
206 —)BE+ B 26— BE+ BT T T

1/3
5 (3) e g +

Solving for ug, gives

Ugy = 3(525_772)(77“5 = Eup).

This is the first canonical form of the hyperbolic PDE. If we make the additional change of
variables, a = { +n and 3 = £ — 7, then the chain rule gives ug, = o — ugg, e = Uq + ug, and
Uy = Uq — ug. Solving these two equations for £ and 1 gives { = (o + 3)/2 and n = (a — ) /2.
The PDE then becomes

a+ 3
Uaa — UBR = 6ad (aug — Pug).

This is the second canonical form of the hyperbolic PDE.
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Case II: The PDE is parabolic (zy = 0)*

Substituting x = 0 or y = 0 into the PDE reduces it immediately to the canonical form of a
parabolic equation, u,, = 0. The characteristic equation reduces to

dy _

0.
dx

Solving this equation for y gives y(z) = D, where D is an arbitrary constant. The characteristic
curves in the zy-plane are lines parallel to the z-axis.

Case III: The PDE is elliptic (zy < 0)°

The characteristic equations have no real solutions for xy < 0. This means that the two distinct
families of characteristic curves lie in the complex plane. Separating variables and integrating the
characteristic equations, we find that

dy [z

A S el

de T\ 3y
2 379 Y
P2 Co.
3Y /3 37 +Co

Solving for the constant of integration (or any convenient multiple thereof),

9 3 .
Working with —% . §x3/2: 500 =32 4 %xg’ﬂ = ¢(z,y)
"9 .
Working with —l—% . §x3/2: gCo = y3/2 — %xB/Z = Y(z,y).
The variables, £ = ¢(x,y) = y*/% + %m?’ﬂ and n = (z,y) = >/ — %m?’ﬂ, are complex

conjugates of one another, so we introduce the new real variables oo = (£ +7)/2 and
B = (& —n)/2i. They aref

1
a:§(§+77):y3/2,
1

1
§= g€ = (=),

After changing variables (z,y) — (a, 8), the PDE becomes

429 = 0 holds on the x and y axes.

Szy < 0 holds in the second and fourth quadrants.

5Because zy < 0, one and only one of the variables needs to have a negative sign when changing variables. Choose
+y and —z for this exercise. If this is not done, the canonical form of the elliptic PDE will not be obtained.
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where, using the chain rule,

A* = Ad2 + Bagoy + Cai

B*™ = 2Aa, B, + B(awfBy + oy fz) + 2C oy By
= AB2 + Bfufy + CB;

D™ = Aoy + Bagy + Cayy + Doy + Eay,

E* = AByy + By + CByy + DB + EB,

F** — F
G™ =G.
Plugging in the numbers and derivatives to these formulas gives A™* = —gfny, B** =0,
Cc* = —Q%y, D™ = —43%, B = j\/‘/%, F** =0, and G** = 0. The PDE simplifies to
9xy Jxy 3x 3\/§y 0
—U f— —_ u =
R I W A War
+ + = + ! 0
U U U ug =
aa BB 3y3/2 o! \/3(—1‘)3/2 B
1
Uga T UBRB + =0.

35

Solving for uaq + ugg gives

1 /u U

This is the canonical form of the elliptic PDE.
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Part (i)
Ugy + 20Uay + 02Uy +u =5
Comparing this equation with the general form of a second-order PDE,

Aty + Bugy + Cuyy + Dug + Euy + Fu = G, we see that A =1, B = 2z, C=ad*> D=0,E=0,
F =1, and G = 5. The characteristic equations of this PDE are given by

dy _ 1 7
3 (o
dy _ 1 A2
dxf2<2xi A 4a>
%:xi\/xz—aQ.

Note that the discriminant, B? — 4AC = 42 — 4a?, can be positive, zero, or negative, depending
on whether 2 — a? > 0, 22 — a® = 0, or 22 — a® < 0, respectively. That is,”

hyperbolic if |z| > |al.
The PDE is ¢ parabolic  if |z| = |a].
elliptic if || < al.

Let us consider each case individually.

Case I: The PDE is hyperbolic (|z| > |a|)

The solutions to the ordinary differential equations are two real and distinct families of
characteristic curves in the xzy-plane. Integrating the characteristic equations, we find that

y(:c)z%[x(xi x2—a2) $a21n<x+ x2—a2>} + Co.

Solving for the constant of integration (or any convenient multiple thereof),

Working with — and +: 2Cy = 2y — [1: (m —Vaz?— a2> +a%ln (x +Va? - a2)} = ¢(z,y)
Working with + and —: 2Cy = 2y — [ac (a: + Va2 — a2> —a’In (ac + Va2 - aQ)} = (z,y).

Now we make the change of variables,
E=d(z,y) =2y — [a: (a: — Va2 — a2) +a?In <:1: + Va2 — aQ)} and
n=1(z,y) =2y — [a: (x + Va2 — a2> —a’Iln (x + Va2 — a2>}, so that the PDE takes the

simplest form. By eliminating y and solving for x, we obtain the transcendental equation,
£ —n=2xvV22—a%2—2a%In (;v +Vz2 — a2>. With the change of variables (z,y) — (£,7), the
PDE becomes

A*uge + B ugy + C™upy + D*ug + Euy + Fru = G*,

"Bring a? to the right and take the square root of both sides.
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where, using the chain rule, (see page 11 of the textbook for details)

A* = A& + B&&, + CE,

B* = 2A&m, + B(&eny + §yna) + 2CEyn,
C* = An? + Bnany + On?

D* = Ay, + Béyy + C&yy + DE, + EE,
E* = Angy + Bngy + Cnyy + Dy + Eny,
F*=F

G =G.

Plugging in the numbers and derivatives to these formulas, we find that A* = 0,

B* =16 (a* —2%), C* =0, D* = -2+ w% E* :—2—%, F* =1, and G* = 5. Thus,
the PDE simplifies to

2z 2z
2 2 _
16(a —az)u§n+<—2+x2_a2>u§—l—<—2— x2_a2>un+u—5

1 T T
Ugn: ]_6(3;2—@2) |:2< 72_012 —1>U§—2<m+1> UU+U—5:| .
This is the first canonical form of the hyperbolic PDE. Since the transcendental equation cannot
be solved for x explicitly, we leave the PDE in terms of z. If we make the additional change of
variables, a = { +n and 3 = { — 7, then the chain rule gives u¢, = uaq — ugg, e = Uq + ug, and
Uy = uq — ug. The PDE then becomes

x T

1
—ugg = 2 1 ot ) (g — _5
Uaa — U 16(:):2—a2)[ < pa— >(ua+u5) < 332—a2+ )(Ua ug) +u

1 4z
uaa—uﬁﬁ = m <—4UQ+MU5+’LL—5> s

where = 2zv22 — a? — 2a%1n <a: +Va? — a2>. This is the second canonical form of the
hyperbolic PDE.

Case II: The PDE is parabolic (|z| = |a|)

When 22 — a? = 0, the equations for the characteristics reduce to

dy _
dr

x.

Integrating this gives the characteristic curves:
y(x) = 5:1:2 + Co.

Solving now for the integration constant,
L o
Co=y— 52" =9(z,y).
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Now we make the change of variables, { = ¢(z,y) =y — %xQ. 7 can be chosen arbitrarily so long
as the Jacobian of £ and 7 is nonzero. We choose 1 = y for simplicity. Solving these two equations
for 2 and y gives 22 = 2(n — &) and y = n. With these new variables the PDE becomes

A*uge + B ugy + Cupy + D*ug + Euy + Fu = G*,

where, using the chain rule, (see page 11 of the textbook for details)

AT = Aé}% + Bngy + Céz

B* =2A&m: + B(fxny + fynx) +2C¢,n,

C* = An + Biany + Cn

D* = Abyy + Béuy + Cyy + Dy + EE,

F*=F

G*=G.
Plugging in the numbers and derivatives to these formulas, we find that A* = a? — 22 = 0,
B* =2(a? - 2?)=0,C* =a? D*=—1, E* =0, F* = 1, and G* = 5. Thus, the PDE simplifies
to

a2um7—u§+u:5
1
Uy = Q(UE —u+5).

This is the canonical form of the parabolic PDE.

Case III: The PDE is elliptic (2% — a? < 0)

The characteristic equations have no real solutions in this case. This means that the two distinct
families of characteristic curves lie in the complex plane. Integrating the characteristic equations,

we find that p
s =z +ivaZ— 22

dzr

1
ylx) == [m2 +1 (x\/ a? — 22 + a® tan~! ;QH + Co.
a’>—zx

2

Solving for the constant of integration (or any convenient multiple thereof),
Working with —i:  2Cy = 2y — 2% + i (a:\/ a? — 22 + a*tan™! f2) = ¢(z,y)
a’? —x

Working with +i: 2Cy = 2y — x? — i <m\/ a2 — 22 + a® tan™* ;:2) =(z,y).
a2 —x

The variables, 5 = ¢(:L‘7 y) =2y — x2 +1 ([E\/ a? — x? + a?tan~! ﬁ) and

n=p(x,y) =2y — x> —i (a:\/ a? — 22 + a®tan~! \/(12{7932» are complex conjugates of each other,
so we introduce the new real variables,

1
a:§(§+77)=23/—l“2
1
B = 5(5—7)) = 2v/a? — 22+ a®tan"! ————
i

2 — 12
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which transform the PDE to
where, using the chain rule,

A* = Aa? + Bagay, + Coz?/

B*™ = 2A0;f: + B(agBy + ayBz) +2Caypy
C** = AB: + BB.B, + CB;

D™ = Aoy + Bogy + Cayy + Doy + Eay,
E** = AByz + By + CByy + DB + EB,

F** — F

G™ =G.
Plugging in the numbers and derivatives to these formulas gives A*™* =4 (a2 — x2), B** =0,
C** =4(a® —2?%), D™ = -2, E* = _%’ F* =1, and G** = 5. The PDE becomes

4(a? — 22 4 (a® - 22 2 2 =5
(a® — 2°) uga + 4 (a® — &%) ugs — ua—ﬁf%%ﬂu—
9 9 2z
4 (a® — 2°) (taa + ugg) = 2uq + ug —u+5

VaZ — 22
1

2x
=— (2 ——ug — 5.
U + UBB 4(@2—.%'2) ( Ua + a2_m2u’3 vt >

This is the canonical form of the elliptic PDE, where x is defined implicitly in terms of /3.
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Part (j)
Y Uzy + 22Uy =0
Comparing this equation with the general form of a second-order PDE,

Aty + Bugy + Cuyy + Dug + Euy + Fu = G, we see that A=y2, B=0,C=2% D=0, E=0,
F =0, and G = 0. The characteristic equations of this PDE are given by

%: i (Bi B2—4AC)
= g (£v-17)

g .

%:i%

Note that B2 — 4AC = —4x2y? < 0, which means that the PDE is elliptic for all z and y.
Therefore, the solutions to the ordinary differential equations are two distinct families of
characteristic curves that lie in the complex plane. Separating variables and integrating the

equations, we find that
L o9
—y°=x= Co.
2y 236 + Co

Solving for the constant of integration (or any convenient multiple thereof),
. . 3 2. 2 .9
Working with EOLE 2C) = y* +iz° = ¢(z,y)
. . 1 2. 2 .2
Working with +§$ i 20y = y* —ix® = Y(z,y).

The typical variables, ¢ = ¢(z,y) = y? + iz? and n = ¥(z,y) = y? — iz?, are complex numbers, so

the PDE will not transform to the simplest form. Rather, since £ and 7 are complex conjugates of
each other, we introduce the new real variables,

a=%(£+n)=y2
f= g6 —n) =2

which do transform the PDE to the simplest form. After changing variables (z,y) — (a, ), the
PDE becomes

where, using the chain rule,

A* = Aa? + Bagay, + Coz;

B* = 2A0;f: + B(agBy + ayfz) +2Cay By
C** = AB2 + BB.By + Cﬁs

D™ = Aoy + Bogy + Cayy + Doy + Eay,
E** = APy + BBy + CByy + DB2 + EBy
F**=r

G =G.
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Plugging in the numbers and derivatives to these equations, A** = 4z2y? = 4a3, B*™* =0,
C** = 4a?y? = 4afB, D** =222 =283, E** = 2y?> = 2a, F** = 0, and G** = 0. So the PDE
becomes
dofuna + 4aBugg + 2Buq + 2aug =0
1 1
uaa""UJﬁ/B"'? a+%u5:0

U
«

1 /u U
uaa+uﬂﬁ:—2<:+;>-

This is the canonical form of the elliptic PDE.
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